ON THE ROLE OF TRANSMISSION PRINCIPLES IN GETTIER-STYLE COUNTEREXAMPLES

You will notice that the proposed Gettier counterexamples rely on what Feldman calls *The Justified Deduction Principle*, namely, the principle that

\[\text{JD: } \text{If (i) } S \text{ is justified in believing } p, \text{ (ii) } p \text{ entails } q, \text{ (iii) } S \text{ deduces } q \text{ from } p \text{ and (iv) accepts } q \text{ as a result of this deduction, then } S \text{ is justified in believing that } q. \]

What is the relevance and significance of JD? It serves as a transmission principle for epistemic justification. That is, it serves to transfer epistemic justification from one doxastic attitude to another, and does so *via* an inference. Of course, not any old inference is “in play.” The inference is a deductive one.

While Feldman is correct about JD, in actual fact, the proposed counterexamples that Gettier proffers rely on closely related, yet subtly different principles. What are these? To state them, let us first say this. Where ‘φ’ and ‘ψ’ propositions, let us abbreviate as follows:

‘\(B\phi \)’ =def. \(S \) believes that \(\phi \),

‘\(J\phi \)’ =def. \(S \) is justified in believing that \(\phi \),

‘\(K\phi \)’ =def. \(S \) knows that \(\phi \),

and

‘\(V(\phi \rightarrow \psi) \)’ =def. \(\phi \) validly entails \(\psi \).

Given these abbreviations, the all important principle for the two counterexamples that Gettier proposes are:

\(\text{GC1: } (Jp & Jq & V[(p \& q) \rightarrow r]) \rightarrow Jr, \)

and

\(\text{GC2: } (Jp & V[p \rightarrow (p \text{ or } q)]) \rightarrow J(p \text{ or } q). \)

Are GC1 and GC2 true? No. In the same way that the following principle

\(\text{GC3: } (Bp & V[p \rightarrow q]) \rightarrow Bq \)

is false, GC1 and GC2 are false. Why is GC3 false? It is clearly false that if Smith believes some proposition, then Smith believes every proposition \(p \) entailed by \(p \). In much the same way, just because Smith might be justified in believing a proposition \(p \) and \(p \) entails another proposition \(q \), that does not imply that Smith is justified in believing \(q \). So, GC1 and GC2 are false; something more than strict entailment is necessary to transmit justification. What is that something more? Simply that a person be justified in believing that the strict entailment holds. So, the relevant transmission principles must be

\(\text{GC1*: } (Jp & Jq & J(V[(p \& q) \rightarrow r])) \rightarrow Jr, \)

and

\(\text{GC2*: } (Jp & J[V(p \rightarrow [p \text{ or } q])]) \rightarrow J(p \text{ or } q). \)
You should notice that the relevant differences between GC1 and GC2, and GC1* and GC2* are the inclusion of the justification operator ‘$J\phi$’ as ranging over the relevant logical entailment relation that is doing the transmission work. GC1* and GC2* are very plausible principles. Of course, whether they’re true is a topic that epistemologists still debate. For instance, we will see later in the course that GC1* and GC2* are related to three other very important epistemic principles. The first one is an agglomeration principle, namely,

$$AB: \quad (Bp \& Bq) \to B(p \& q)$$

The other two are “closure” principles. The first is called the knowledge is closed under known entailment principle, namely,

$$CPK: \quad (Kp \& K[p \to q]) \to Kq;$$

the second is called the justification is closed under justified entailment principle, namely,

$$CPJ: \quad (Jp \& J[p \to q]) \to Jq.$$

Whether AB, CPK and CPJ are true or whether we’re justified in accepting them are issues that are closely and relevantly related to the success of philosophical skepticism.